Actors and Factories In Rust

RustConf'24 - Montreal

Usages for distributed processing overload protection

Sean Lawlor Pedro Rittner

Software Engineer Production Engineer
Aka “aractor actor” 00 M etCI

Ove rV| ew e Motivation

o Thrift for RPC @ Meta
o Rust Thrift Servers @ Meta
o Why Actors?
e Ractor - aframework
o Factories
o Overload protection

e Putitalltogether

A Very Brief History of \
Rust @ Meta

Rust @ Meta - Beginnings

e First “serious” Rust usage at Meta started ~2017

with Mononoke in Source Control.

e Rust disadvantaged due to limited interoperability

with existing C++ code.
o didn’t exist yet, only worked with C.

e Problem: How to enable more Rust adoption?

https://github.com/facebookarchive/mononoke

fothrift RPC @ Meta

YOU GET A THRIFT SERVICE! YOU GET A THRIFT SERVICE! -

e Many Meta backend services were (are) written in

C++ or Python using fbthrift, an IDL and RPC

framework forked from Apache Thrift.

o Scribe - Buffered Distributed Queuing

o ZippyDB - Distributed Key-Value Database

. -
e Idea: Add fbthrift support for Rust, leverage F -
existing language-agnostic frameworks/libraries to Ev“'vnonv GETS A l""““ SEnmcEl

build Rust service mesh clients and servers.

https://github.com/facebook/fbthrift
https://engineering.fb.com/2019/10/07/core-infra/scribe/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/

fothrift RPC @ Meta

Problem:

Many features added to fbthrift in response to
infrastructure needs (e.g. backpressure, overload

protection) implemented as C++ Server middleware.

Back to square one?

(i) NOTE

These features are only supported in C++ servers.

fothrift + Rust: Initial Approach

e lIdea: Use (later) to manually
implement just enough FF| “glue” code to offload

most work to existing C++ fbthrift server.

o Codegen for Rust still needed but easier lift (can reuse

existing templating code in fbthrift compiler)

o New features added to C++ fbthrift servers should “just

work” for Rust fbthrift servers!

e Problem: How to integrate Rust and C++?

Basic Rust Thrift Services: Sketch

e Idea: Write a “shim” layer between the user’s business
C++ Thrift Server

logic and the raw C++ Thrift server.

e C++ handles: serving traffic on the socket(s) using

Rust Thrift Server Shim
own threadpools and event loops to do |/O.

e Rust handles: request (de)serialization and calling Rust Thrift Codegen

user code by spawning tasks in the runtime.

Rust Server Business Logic

Problem: How to bridge C++ and Rust runtimes?

C++ vsS Rust

C++ Rust
Mix of coroutines, futures, and callbacks e Futures “hidden” behind keyword
Futures start executing immediately e Futures must be polled to make progress
Manage multiple threadpool-based executors e Runtimes manage and abstract threadpools
-based event base for 1/O operations ° -based “reactor” for I/O operations

Problem: How do we reconcile these two approaches/models?

C++ Tollyv:corovsRust acync

e Mix of corg e Futures “hidden” be syword

ting immediate e Futures must be polled to ress

threadpool-based executc dpools

went base for I/O operations ons

\ Basic Rust Thrift Services: Naive Solution

This is an unbounded
queue! 3

Rust Thrift Service Shim

Tokio
Request C++ Tasks

> Thrift

Server

Threads

Nailve Solution = Many Overload Outages!

“There has to be a better way to do this!”

N\

Enter: Actors

Actors have a great history in large-scale distributed workloads, as well as solving many
memory management headaches.

“An Actor is a computational entity that, in response

to a message it receives, can concurrently:

e send a finite number of messages to other
Actors;

e create a finite number of new Actors:

e designate the behavior to be used for the next
message it receives.”

- Carl Hewitt 1973

Why Actors?

e Isolation and Concurrency: Actors provide a natural way to isolate concurrent operations,

allowing multiple requests to be processed simultaneously.

e Fault Tolerance: Actor systems can be designed to handle failures in individual actors,

preventing a single failure from bringing down the entire system.

e Scalability: Actors can be easily distributed across multiple nodes, making it simple to scale

the system horizontally as needed.

e Simplified State Management: Actors encapsulate their own state, reducing the complexity

of managing global state and making it easier to reason about the system's behavior.

Ractor: \
A New Framework

Why a new framework?

There are already multiple frameworks for actors in rust

There are a *lot* of actor framework projects on Cargo.

Inspired by my discovery of Sussman's recent "We Really Don't Know How to Compute!" talk . |
figured those Erlang zeatots people may have been right all along and actors might be worth gevetifg
mytife-to giving a try for all these years.

Since Rust is the fastest and safest language I know, I figured if I ever get really into actors, I'll just go
with I Actix is pretty darn fast (ingest a grain of salt, look at TechEmpower benchmarks, etc.)...
Surely there aren't that many other erlang-like actor framework options out there right?

Link to project in crates.io

n (ate X

A184 rate ite 1 !
https://crates.io/crates/maxim
https://crates.io/crates/actors-rs
https://crates.io/crates/actor

Nt rate rates/ma 1
ntp L6 (ates/t

Actix

nit rate ates/t 1 I
ntp rats (ate (1CTO
= = = nteps://crates ate 1
Alice Ryhl Actors with Tokio
Personal website Published 2021-02-13 NUps://crat ales/a
u This article is about building actors with Tokio directly, without using any actor libraries such as nttps://crates.io/crates/coerce
Home Actix. This turns out to be rather easy to do, however there are some details you should be aware
Linkedin of: https://crates.io/crates/heph
GitHub . Where to put the tokio: :spawn call. https://crates.io/crates/scrappy-acto
Email . Struct with run method vs bare function.
. Handles to the actor. { ate ished up
Rss Feed . Backpressure and bounded channels.
. Graceful shutdown. https://crates.io/crates/lwactors
htt 1 (ate
ntt ¢ ate ror)
n € ire Ct

Why a new framework?

The problems with these crates that we've found is that they're...

Dead/unsupported

Customized a lot of workflows away from Erlang’s principles
Not flexible enough

Have custom runtimes / don't play nice with Tokio.

So... Ractor!

What is ractor all about?

|solated actor processes with optional state

e Actor Supervision trees through a basic trait

e Remote procedure call - gole [T mansox | [warox |

o Timers- time %M%%>O] > O
e Named registry - registry

e Process groups - Pg \ /

e *Factories™ - factory

IEMallbox i

Factories

Not a factory method!

Factories

What happens if a single actor can’t handle the load?

Work distribution

Request

—_—

Request

—_—

Worker

Worker

\ Factories

Worker lifecycle management

Request W
_> g

\ Factories

Queue backlog management

Worker
Req uest
Worker
0-
Worker

\ Factories

Job discarding / rejection

Request

-

VVorker

Factories and Thrift Servers

Concurrency limited Rust Thrift Server

Rust service implementation

ThriftFactory

Route to fixed number of
tasks and backlog (queue)
management

Request C++
gl Thrift server Router

< C ©

Factory workers

OVERLOAD PROTECTION

Controlling qgueue depth

e Jobssitting in the thrift queue increase overall job processing delays.
e If the host is overloaded/slow then messages may be needlessly delayed when other hosts are

free

A common metric to use for queue depth management is message latency

/
Host
Overloaded
>

|

L

OVERLOAD PROTECTION

Controlling processing concurrency

e If the host is under/over-loaded the host should scale the worker count to target a goal resource
utilization

e Common metrics used for host utilization
o CPU
o Memory
o Network
o Or acombination

Reguest draining

What happens when a running service is updated and there are current requests being processed?

Request draining & Lifecycle management

Standard Factory
Lifecycle Events

F@CtOﬁ{]NYﬂﬁng

—

o . //)ﬁ“tﬁgnaj II Pactory
t 1. New jobs rejected stopped

: ueue empt
L . Queued jebs run Factory) 4 e

drahﬁng 4/,

i

drain s@mal

Main Pr*oce,ssing
Loop

Pac‘tory
started :

EX200291

Conclusion

Meta has a heavy service-to-service dependency on Thrift

Rust had to adapt to the existing framework to survive in Meta

Due to implications of threading models, we couldn’t use the existing loadshedding frameworks
Built with Tokio in-mind, ractor adds safe concurrency for processing Thrift requests

Factories help scale outside of a single task loop safely

\ Links

Ractor: actors for Rust - https://github.com/slawlor/ractor

Facebook Thrift - https://github.com/facebook/fbthrift

Rust-shed extensions -
https://github.com/facebookexperimental/rust-shed

Factories - Introduced by WhatsApp for Erlang
e https://www.youtube.com/watch?v=c12cYAUTXXs

https://github.com/slawlor/ractor
https://github.com/facebook/fbthrift
https://github.com/facebookexperimental/rust-shed
https://www.youtube.com/watch?v=c12cYAUTXXs

