
Actors and Factories in Rust
Usages for distributed processing overload protection

Sean Lawlor
Software Engineer
Aka “a ractor actor”

RustConf’24 - Montreal

Pedro Rittner

Production Engineer

Overview ● Motivation

○ Thrift for RPC @ Meta

○ Rust Thrift Servers @ Meta

○ Why Actors?

● Ractor - a framework

○ Factories

○ Overload protection

● Put it all together

A Very Brief History of
Rust @ Meta

Rust @ Meta - Beginnings

● First “serious” Rust usage at Meta started ~2017

with Mononoke in Source Control.

● Rust disadvantaged due to limited interoperability

with existing C++ code.

○ cxx didn’t exist yet, bindgen only worked with C.

● Problem: How to enable more Rust adoption?

https://github.com/facebookarchive/mononoke

fbthrift RPC @ Meta

● Many Meta backend services were (are) written in

C++ or Python using fbthrift, an IDL and RPC

framework forked from Apache Thrift.

○ Scribe - Buffered Distributed Queuing

○ ZippyDB - Distributed Key-Value Database

● Idea: Add fbthrift support for Rust, leverage

existing language-agnostic frameworks/libraries to

build Rust service mesh clients and servers.

https://github.com/facebook/fbthrift
https://engineering.fb.com/2019/10/07/core-infra/scribe/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/

fbthrift RPC @ Meta

Problem:

Many features added to fbthrift in response to

infrastructure needs (e.g. backpressure, overload

protection) implemented as C++ Server middleware.

Back to square one?

fbthrift + Rust: Initial Approach

● Idea: Use bindgen (later cxx) to manually

implement just enough FFI “glue” code to offload

most work to existing C++ fbthrift server.

○ Codegen for Rust still needed but easier lift (can reuse

existing templating code in fbthrift compiler)

○ New features added to C++ fbthrift servers should “just

work” for Rust fbthrift servers!

● Problem: How to integrate Rust and C++?

Basic Rust Thrift Services: Sketch

● Idea: Write a “shim” layer between the user’s business

logic and the raw C++ Thrift server.

● C++ handles: serving traffic on the socket(s) using

own threadpools and event loops to do I/O.

● Rust handles: request (de)serialization and calling

user code by spawning tasks in the tokio runtime.

Problem: How to bridge C++ and Rust runtimes?

C++ Thrift Server

Rust Thrift Server Shim

Rust Thrift Codegen

Rust Server Business Logic

C++ folly::coro vs Rust async

C++

● Mix of coroutines, futures, and callbacks

● Futures start executing immediately

● Manage multiple threadpool-based executors

● libevent -based event base for I/O operations

Rust

● Futures “hidden” behind async keyword

● Futures must be polled to make progress

● Runtimes manage and abstract threadpools

● mio -based “reactor” for I/O operations

Problem: How do we reconcile these two approaches/models?

C++ folly::coro vs Rust async

C++

● Mix of coroutines, futures, and callbacks

● Futures start executing immediately

● Manage multiple threadpool-based executors

● libevent -based event base for I/O operations

Rust

● Futures “hidden” behind async keyword

● Futures must be polled to make progress

● Runtimes manage and abstract threadpools

● mio -based “reactor” for I/O operations

Pass function objects between them and hope it works!

Basic Rust Thrift Services: Naive Solution

C++
Thrift

Server

Request

Service
Router

Rust Thrift Service Shim

Tokio
Tasks

Threads

Request

This is an unbounded
queue!

Naive Solution = Many Overload Outages!

“There has to be a better way to do this!”

Enter: Actors

Actors have a great history in large-scale distributed workloads, as well as solving many

memory management headaches.

“An Actor is a computational entity that, in response
to a message it receives, can concurrently:
● send a finite number of messages to other

Actors;
● create a finite number of new Actors;
● designate the behavior to be used for the next

message it receives.”

- Carl Hewitt 1973

Why Actors?

● Isolation and Concurrency: Actors provide a natural way to isolate concurrent operations,

allowing multiple requests to be processed simultaneously.

● Fault Tolerance: Actor systems can be designed to handle failures in individual actors,

preventing a single failure from bringing down the entire system.

● Scalability: Actors can be easily distributed across multiple nodes, making it simple to scale

the system horizontally as needed.

● Simplified State Management: Actors encapsulate their own state, reducing the complexity

of managing global state and making it easier to reason about the system's behavior.

Ractor:
A New Framework

Why a new framework?

There are already multiple frameworks for actors in rust

Actix

Riker

Why a new framework?

The problems with these crates that we’ve found is that they’re…

● Dead/unsupported

● Customized a lot of workflows away from Erlang’s principles

● Not flexible enough

● Have custom runtimes / don’t play nice with Tokio.

So… Ractor!

What is ractor all about?

● Isolated actor processes with optional state

● Actor Supervision trees through a basic trait

● Remote procedure call - mod rpc

● Timers - mod time

● Named registry - mod registry

● Process groups - mod pg

● *Factories* - mod factory

Factories
Not a factory method!

Factories
What happens if a single actor can’t handle the load?

 Actor
Request

Work distribution

Request

 Worker

 Worker

 Worker

 Worker

 Worker

Request
 Worker

 Worker

Factories

Worker lifecycle management

 Worker

Factories

Queue backlog management

Request
 Worker

 Worker

 Worker

Factories

Job discarding / rejection

Request
 Worker

 Worker

 Worker

Factories and Thrift Servers

Rust service implementation

ThriftFactory

Concurrency limited Rust Thrift Server

C++
Thrift server

Request

Factory workers

Router

Route to fixed number of
tasks and backlog (queue)

management

Loadshed

Service
Router

Controlling queue depth
● Jobs sitting in the thrift queue increase overall job processing delays.

● If the host is overloaded/slow then messages may be needlessly delayed when other hosts are

free

A common metric to use for queue depth management is message latency

OVERLOAD PROTECTION

Host
Overloaded

Controlling processing concurrency

● If the host is under/over-loaded the host should scale the worker count to target a goal resource

utilization

● Common metrics used for host utilization
○ CPU

○ Memory

○ Network

○ Or a combination

OVERLOAD PROTECTION

Host underutilized
FactoryFactory

Request draining

What happens when a running service is updated and there are current requests being processed?

Request draining & Lifecycle management

EX200291

Conclusion

● Meta has a heavy service-to-service dependency on Thrift

● Rust had to adapt to the existing framework to survive in Meta

● Due to implications of threading models, we couldn’t use the existing loadshedding frameworks

● Built with Tokio in-mind, ractor adds safe concurrency for processing Thrift requests

● Factories help scale outside of a single task loop safely

Links

Ractor: actors for Rust - https://github.com/slawlor/ractor

Facebook Thrift - https://github.com/facebook/fbthrift

Rust-shed extensions -
https://github.com/facebookexperimental/rust-shed

Factories - Introduced by WhatsApp for Erlang

● https://www.youtube.com/watch?v=c12cYAUTXXs

https://github.com/slawlor/ractor
https://github.com/facebook/fbthrift
https://github.com/facebookexperimental/rust-shed
https://www.youtube.com/watch?v=c12cYAUTXXs

